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NOTE

Accurate Discretization of Gradients on Non-uniform
Curvilinear Staggered Grids

1. INTRODUCTION

Keeping only the pressure term. the equations of incompress-
ible flow are given by the following reduced form of the Navier—
Stokes equations, choosing units such that the density p = 1,

Aufar+Vp =0 (L
diva =1 (1.2}

with V the gradient operator. The equation
—diviDVp)=o {1.3)

plays an important role in the theory of flow in porous media
and closely resembles the pressure equation in the IMPES
(implicit pressure, explicit saturation) model in reservoir engi-
ncering. Often the domain contains interfaces across which D
has targe jumps. Therefore (1.3) is called the interface problem.
For simplicity, the domain in which {1.1) or (1.2} is to be solved
is assumed two-dimensional, bul our considerations carry over
to Lthrec dimensions.

When the domain has a complicated shape it is common to
map it onto a rectangle by a boundary-fitted coordinate map-
ping. In the rectangle a uniform grid is chosen. Its image in
the physical plane is a general (curvilinear, non-orthogonal,
non-uniform) structured grid. Both in the classical staggered
{marker-and-ccll) discretization of the incompressible Navier—
Stokes equations (proposed in [3] for Cartesian grids) and in
so-called block-centered discretizations of (1.3) in reservoir
engincering | F]. the numerical approximation of p resides in
the cell centers, whereas the normal component of u and Vp
{in the case of (1.13, (1.2)) and D Vpr are located in the centers
of cell faces. In block-centered discretizations of (1.3) the cell-
faces are usually placed along interfaces, so that D is not defined
there, but D Vp is smooth.

In [2] it is shown how in the context of (1.1) and (1.2)
straightforward discretizations of Vp may casily result in O(1)
errors on non-uniform grids, even when Vp is constant, and
numerical experiments are performed with four discretizations
of Vp, only one of which is found to be exact experimentally
for Vp constant, Qur aim here is to provide a theoretical deriva-
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tion of the best scheme in [2], providing an extension to (1.3)
at the same time.

2. THE, REDUCED FORM OF THE NAVIER-STOKES
EQUATIONS

Let the boundary-fitted coordinate mapping be given by

x = x(&) (2.1)

with x Cartesian coordinates and £ general coordinates. The
covariant and contravariant base vectors are defined by, respec-
tively,

A, = dxfogs, a®=vV§ (2.2)
and the Jacobian of the mapping is given by
Vg = albyaty — apaly. (2.3)

Note that a,, is casity computed from (2.2), whereas a™ can
be computed from .

a . gy = 6,‘5, (2.4)

resulting in
\/Eatl) = ((‘%2)., _alll))T- \/gam = (“a(zi)s ﬂfn)TA (2.5)

Instcad of using the normal component of u in cell face centers
it is betler to use normal mass Hux components (as argued in
|7, 4]). These are given by

\ Ve = Vga® - u. (2.6)
Here V' d£? is the mass flux normal to coordinate lines ¢' =
constant through a line element of length |dx/3¢%| d&%, and
similarly for V? dg'. .

Taking the inner product of (1.1} with Vga® gives

avelar + Vga® - Vp = 0. 3}
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FIG. 2.1, Cell in computational domain G and its image in the physical
domain £}

Figure 2.1 presents a cell of the staggered grid in physical space
and in the computational rectangle.

The sides of the cell are straight in Fig. 2.1, which implies
a piecewise bilinear coordinate mapping, but our considerations
are independent of the way in which the coordinate map-
ping is defined in between cell vertices. On the staggered grid
we have to compute, for example, dV}.p/dt, and we have
to discretize the pressure term in (2.7) in the grid point
(i + 1/2, j). We want to do this such that the result is exact
for constant Vp on arbitrary non-uniform grids. An elegant way
to achieve this is as follows. We can write

i+i,j

plit = Vp dx=Ypin, - an AL (2.8}

with
(2.9)

Note that (2.8) is exact for Vp constant. A second equation
expressing Vp in differences of p is obtained by writing down
an equation similar to (2.8), but with a different path-integral.
For reasons of symmetry and, hence, low truncation error on
smooth grids we choose the average of two paths as

{pl‘r{ +p|:I%J+{} — _{J‘uﬂ n J'i:ﬂ.{’ﬂ} Vp . dx

1 i+1,j=1

= Vi, 5(2) V&

with

Ap = —— {x| M + x| (2.11)

which is again exact for Vp constant. Equations (2.8) and (2.10)
can be solved for Vp as follows. In analogy with (2.5) we define

365

80 = @hy, —ah)UVE Y= (-ah,a)VE (212)
\/g = (] a - 5(21)5(‘2; (213)
so that a® - a, = &§. Inspection shows that the solution is
given by
VDisin; = —-a<”p|'*‘f+ a%plit +plittitlh. 14

gl 4A §2
In a similar way an approximation of Vp;, ;;,,, can be obtained.
Substitution of (2.14) in (2.7) gives a discretization which is
exact if Vp = const, regardless of the smoothness of the grid.

Next, we have to determine how to approximate \/_a‘“) in
{2.6) and (2.7). This follows from the treatment of (1.2), In
order to ensure mass conservation, we discretize (1.2) by finite
volume integration over a cell. By way of the Gauss divergence
theorem we obtain a contour integrat consisting of contributions
such as

R
f u - (dx?

12,5~ 12 —dxY ={u- 7, —OHHEE (219)
which is exact for u constant (in space), corresponding to Vp
being constant. Itis immediately obvigus that we have to choose

in (2.6) and (2.7)

1 i
(Vea)n; = VEa0 = 1 (6% = x| 13113

Ag !
(2.16)
and, similarly,
1
(\/gam)f,nuz = \/éﬁm = KE‘( X% x )Tlit]ﬁﬂ i,
{2.17)

where the hat symbol serves 1o distinguish this approximation
of ‘\/éa‘“) from that in (2.12). The following discretization of
{1.2) is obtained:

AEV A + AV IR =0 (2.18)
and we reiterate that V= is defined by (2.6} with \/§a(") approxi-
mated by (2.16) and {2.17).

In order to solve (1.2) and (2.7) simultaneously an implicit
time discretization must be used, because p is in fact a Lagrange
multiplier determined by the constraint (2.7) or by the constraint
(2.18) in the discrete case. Employing the backward Euler
method the discrete system becomes

Wi = Vi, — Ar(\/_a(“ “VP)irin (2.16)
Vigih = Ve — A(Vga® - Vp) e (217)
A§2V|n+1|:+m; + Aflvz,ﬂ+] l.;+1!2 =1, (2.18)



366

We may regard V="' as the projection of V=" on the space of
solenoidal vector fields, where solenoidal is defined in the dis-
crete sense by (2.18). This is the point of view taken in [2],
where four discretization methods to perform this projection
are tested. Qur discretization is identical to the discretization
which is found to be best on the basis of numerical experiments
in {2]. Thus we have given a theoretical justification of this
method, proving that it is exact for Vp constant on arbitrary
grids.

The projection on the space of solenoidal vector fields {of
which (2.16)—(2.18) is a superior numerical implementation
[2]) is the basis of the pressure-correction method for solving
the instationary incompressible Navier—Stokes equations. How-
ever, use of this method is not mandatory. An alternative is,
for example, Vanka’s method [5]. Also in this case the discreti-
zation of Vp needs to be accurate, which is therefore a more
fundamental issue than the accuracy of projection on the space
of solenoidal vector fields. Generalization to three dimensions
is straightforward.

3. THE INTERFACE PROBLEM

A similar approach may be taken to discretize the interface
problem (1.3) on the block-centered grid of Fig. 2.1, such that
the discretization is exact for D Vp constant on arbitrary grids,
if D is piecewise constant. Discontinuities of D are allowed
only on interfaces.

Integration of (1.3) over a cell in a finite volume discretization
procedure leads via the Gauss divergence theorem to integrals
over cell faces, such as

i+ 112, j+172

j D
1,112

where ds is normal to the face in the outward direction and

has length equal to a line-increment along the face. The approxi-
mation in (3.1) is exact for I} Vp constant. We have

120

Vo ds= D Vphiwn, - | 3.1)

12,5112

12,4112 i s T o ‘ ,
.[Hm,j—uz D Vp - (dx®, —dx')" = (D VP),H:z,;

3.2
VA AE 32)
(cf. (2.15) and (2.16)), which is exact for D Vp constant. In
order to approximate D Vp in terms of grid values for p we
follow a procedure quite similar to that for Vp in Section 2
and write, exploiting the smoothness of D Vp,

l+]jl

D Vp - dx = (DVp)in, by

Pl = (3.3)

with

i+ 1
b(,)zj&_ ' dx (3.4)
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This is exact for D Vp constant. Assuming D to be constant in
each cell we have exactly

b(;) = {(a(ﬂ]‘)/D)U + (a(*f)/D)j.'.]u-:} A§|/2 (35)
and, assuming the mapping x = x(£) to be bilinear,
aky, = {xl:*{ﬁ fﬂ,’é + X|‘+}ﬁf %18 (3.6)

2A§'

In order to obtain a second equation for (I3 Vp),,n; we choose
the average of the same two paths as for Vp, for the same
reasons, plus the fact that this gives us the standard discretiza-
tion in the Cartesian case x = £ We write, omitting some
details which should be clear from the foregoing,

Pl:ﬁ +pliiti =0 Vo)ivin; " b 3.7
with
bg — X :;_112 + — :;4_»1,’2 x| Tl
(2) Dil‘}_ . I 4 D!J | 12 Dj,j+1 | Naals
1 +1.7-172 ] i+1,i+ 142
+ D X‘Hl:j'l + ——x|if}iE (3.8)
i+1,j-1 i1,
+ X I;+1.1j+l N
DH_]JH | +1j+182
Defining
b = (b}, —bly)/B, b® = (—b,, bl,)"/B,
(3.9)
B = blybiy — Biybiy,
we have b* - by, = 8%, and the solution of (3.3) and (3.7) is
found to be

(DVpliip, = bmp“}-]'j + b(Z){Plﬁil + Pliﬂff'{}
(3.10)

The treatment of (D Vp); 4z 18 similar. Extension to three
dimensions is straightforward, but somewhat laborious. In the
Cartesian case X = £ the well-known stencil is obtained,

—Wiitin

“Wioiny; 2 (3.11)

—Witin |,
Wi
where Z is the negative sum of the surrounding coefficients

and wip; the harmonic average of the neighbouring diffu-
sion coefficients:
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| 1
Wiring = 1 (2Dij + 2Di+],])- (312

The formula for w; ;.15 is analogous. A derivation of (3.12) from
first principles may be found, for example, in [6, Section 3.3].
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